微生物学通报  2023, Vol. 50 Issue (9): 4260−4274

扩展功能

文章信息

黄若琪, 李瑜玲, 杨恩
HUANG Ruoqi, LI Yuling, YANG En
乳酸菌对真菌毒素的脱毒作用研究进展
Detoxification of lactic acid bacteria to mycotoxin: a review
微生物学通报, 2023, 50(9): 4260-4274
Microbiology China, 2023, 50(9): 4260-4274
DOI: 10.13344/j.microbiol.china.230004

文章历史

收稿日期: 2023-01-02
接受日期: 2023-04-03
网络首发日期: 2023-05-05
乳酸菌对真菌毒素的脱毒作用研究进展
黄若琪 , 李瑜玲 , 杨恩     
昆明理工大学生命科学与技术学院, 云南  昆明    650500
摘要: 真菌毒素广泛存在于农业产品中,对人和动物的健康构成巨大威胁。乳酸菌作为一种公认安全的微生物,在食品生物减毒方面具有巨大的应用潜力,成本低廉且不会对食品品质及生态环境造成不良影响。文章主要根据近年来国内外研究进展,阐述乳酸菌对食品和饲料中几种常见真菌毒素的脱毒作用(抑制真菌生长、毒素的吸附和降解),关注乳酸菌在生物脱毒方面的实际应用,为乳酸菌在食品保鲜领域的应用提供理论指导。
关键词: 乳酸菌    真菌毒素    生物脱毒    
Detoxification of lactic acid bacteria to mycotoxin: a review
HUANG Ruoqi , LI Yuling , YANG En     
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
Abstract: Mycotoxins are widely present in agricultural products, posing a severe threat to human and animal health. As a group of recognized safe microorganisms, lactic acid bacteria have great application potential in the biological detoxification of food, with low cost and no adverse impact on food quality and the environment. By reviewing the recent research progress in this field, we introduced the detoxification effects (inhibition of fungal growth and adsorption and degradation of toxins) of lactic acid bacteria on several common mycotoxins in food and feed, with focuses on the practical application of lactic acid bacteria in biological detoxification. This review aims to provide theoretical guidance for the application of lactic acid bacteria in food preservation.
Keywords: lactic acid bacteria    mycotoxin    biological detoxification    

真菌毒素是真菌在新陈代谢过程中产生的一类有害次级代谢物,目前已发现的种类超过300种[1]。真菌毒素侵染人和动物后与体内生物大分子结合,抑制蛋白合成,破坏遗传物质,损坏细胞结构[2],进而引起多种临床症状,如儿童发育迟缓、肝肾损伤和免疫力降低,甚至引发癌症[3]。在众多的真菌毒素中,黄曲霉素(aflatoxin, AFT)、玉米赤霉烯酮(zearalenone, ZEN)、展青霉素(patulin, PAT)、赭曲霉素A (ochratoxin A, OTA)、伏马毒素(fumonisin, FB)毒性最大,长期困扰人类,对人类健康和农业经济造成巨大影响[4]

随着科学技术的飞速发展以及生活水平的改善,人类愈发重视食品安全,如何安全高效地去除真菌毒素以保障食品的安全性成为目前的一项研究热点。传统清除真菌毒素的物理化学方法成本较高、操作复杂且效率低下,破坏食品营养成分[5]。乳酸菌(lactic acid bacteria, LAB)广泛应用于食品发酵行业,同时是肠道菌群的一部分。因为LAB对真菌毒素脱毒具有毒性低、污染小、特异性强、安全性高等优点,所以具有巨大的发展潜力[6]。目前有很多关于LAB清除真菌毒素的报道,主要集中在LAB抑制产毒真菌的生长和毒素的产生以及吸附降解已有的真菌毒素方面。本文总结了近年来LAB对真菌毒素生物脱毒作用的相关报道,并对目前研究的局限性和未来的研究方向作出了展望,以期为LAB在真菌毒素清除作用方面的进一步应用提供参考。

1 LAB对真菌毒素的作用

LAB是能够利用营养物质代谢产生乳酸的一类革兰氏阳性菌,主要存在于牛奶、乳制品和天然人体肠道菌群中,可作为对抗各种致病菌的抗菌剂,具有作为生物防腐剂的潜力。研究表明,LAB可以通过抑制产毒真菌生长和中和真菌毒素2种方式进行减毒[7]。在LAB生长代谢过程中会产生有机酸、蛋白质和肽等抗真菌物质,使许多LAB具有广谱抗菌活性。根据Zhao等[8]的试验表明,LAB合成的乳酸、苯乳酸和乙酸对禾谷镰刀菌(Fusarium graminearum)、黑曲霉(Aspergillus niger)、米曲霉(Aspergillus oryzae)和黄曲霉(Aspergillus flavus)具有抑菌活性;以A. niger作为指示菌,当乳酸浓度为30 mg/mL时抑菌率为65.06%,乙酸浓度为15 mg/mL时抑菌率达到66.94%,当2种酸混合时抑菌率高达84.74%。Vimont等[9]研究发现罗伊氏乳杆菌代谢生成的罗伊氏菌素浓度为1.38 mmol/L时对酵母菌和丝状真菌具有抑菌作用,而当浓度为6.9 mmol/L时具有杀菌作用。

LAB对已有真菌毒素的减毒作用主要通过吸附和降解,研究最多的是LAB对真菌毒素的吸附作用。其中,磷壁酸、脂磷壁酸、S层蛋白、胞外多糖和肽聚糖的复杂网络在这一过程起着至关重要的作用[10],并且吸附能力与真菌毒素的初始浓度、LAB细胞浓度、菌株种类、食物的复杂性和pH以及培养温度有关[11]。然而LAB对真菌毒素的降解作用则通过LAB产生的代谢物和酶实现。

1.1 LAB的抗真菌作用

真菌产毒与菌株的生长有关,在真菌生长阶段结束后开始产毒,因此抑制产毒真菌生长能够有效避免真菌毒素的产生。LAB抑制真菌的生长主要通过2种方式:(1) LAB在新陈代谢过程中产生有机酸,如乙酸和乳酸[12],导致环境pH降低,限制细菌和真菌的生长,包括许多致病和变质微生物。(2) LAB在生长代谢的过程中能够合成对真菌生长有抑制作用的抑菌物质,例如有研究报告细菌素或者细菌素样物质对扩展青霉(Penicillium expansum)和灰霉菌(Botrytis cinerea)等有害菌的生长具有一定的抑制作用[13]。乳酸菌及其来源,可抑制真菌,抑菌物质总结如表 1所示。

表 1 LAB的抗真菌特性 Table 1 Antifungal properties of lactic acid bacteria
Source LAB Fungi Antifungal substance References
Fermented milk product Lactobacillus plantarum,
Furfurilactobacillus milii,
Lentilactobacillus parabuchneri
Aspergillus clavatus, Penicillium caseicolum, Mucor racemosus Fatty acids, acetate [14]
Cocoa bean Lactobacillus fermentum, Lactobacillus plantarum Aspergillus flavus, Penicillium citrinum, Aspergillus niger, Aspergillus fumigatus Phenyllactic acid [15]
Yogurt Lactobacillus reuteri Penicillium Chrysogenum, Mucor racemosus Reuterin [9]
Sourdough Lactobacillus plantarum Fusarium verticillioides, Fusarium graminearum, Fusarium moniliformis,
Penicillium roqueforti, Penicillium camemberti, Penicillium expansum,
Aspergillus parasiticus, Aspergillus niger
Gallic acid,
caffeic acid, syringic acid
[16]
Barley Lactobacillus plantarum Penicillium expansum Organic acid [17]
Fermented cassava Lactobacillus pentosus,
Lactobacillus plantarum,
Lactobacillus brevis,
Lactobacillus delbrueckii,
Lactococcuslactis,
Lactobacillus fermentum,
Leuconostoc mesenteroides
Penicillium oxalicum, Aspergillus niger Lactic acid [18]
Algerian raw milk samples and traditional fermented product Lactobacillus plantarum,
Lactobacillus paracasei,
Leuconostoc mesenteroides
Mucor racemosus, Penicillium,
Yarrowia lipolytica, Aspergillus,
Aspergillus flavus, Paecilomyces
Lactic acid, acetic acid [19]
Food samples from Argentina and Peru Pediococcus pentosaceus, Leuconostoc mesenteroides, Lacticaseibacillus paracasei, Lactobacillus paracasei, Companilactobacillus farciminis, Levilactobacillus brevis Aspergillus flavus, Aspergillus parasiticus, Aspergillus carbonarius, Aspergillus niger, Aspergillus welwitschiae, Aspergillus steynii, Aspergillus westerdijkiae, Penicillium verrucosum No data [20]
Malaysian fermented foods Leuconostoc mesenteroides, Lactobacillus plantarum, Aspergillus niger, Aspergillus parasiticus, Penicillium roqueforti, Eurotium rubrum, Monilia sitophila Low molecular peptides [21]
Wheat Lactobacillus rhamnosus Aspergillus flavus, Aspergillus parasiticus Lactic acid, acetic acid [22]
Date processing waste Lactobacillus rhamnosus Penicillium chrysogenum, Aspergillus niger Lactic acid [23]
Traditional Egyptian buttermilk Lactobacillus spp. Aspergillus parasitica, Aspergillus flavus, Aspergillus carbonarius Organic acid, hydrogen peroxide [24]
Silage, cucumber, apple, soil Lactobacillus plantarum Aspergillus parasiticu,
Aspergillus flavus
Hydrogen peroxide [25]

目前LAB对病原菌的抑制机制不完全清楚,但大多数研究人员认为抑菌现象是由几个因素共同引起,其中有机酸的产生被认为是LAB抑制真菌生长的最重要机制[26]。有机酸的抑制作用由未解离分子引起,这些分子在低pH环境中占主导地位,会破坏与细胞膜转运和氧化磷酸化相关的细胞基本代谢功能;当LAB产生的有机酸进入到食物环境中时,根据食物的pH,酸的pKa和温度导致部分分子解离,而其他分子未解离,未解离的有机酸分子以其疏水性穿过细胞膜在细胞质解离,释放质子降低跨膜质子梯度并中和质子动力,引起细菌内部pH降低,导致蛋白质变性失活[27]。此外,乳酸可直接渗透到细胞膜中导致细胞内pH降低,同时可以增强其他抗菌物质的作用[28]。罗伊氏菌素是罗伊氏乳杆菌代谢甘油产生的一种特殊物质,负责LAB菌株的各种生物活性。研究表明,罗伊氏菌素对革兰氏阳性和阴性细菌均具有广谱抑菌作用,通过修饰蛋白质和小分子中的巯基基团诱导细胞氧化应激,并抑制DNA合成,从而抑制细菌生长[29]。有氧条件下,LAB通过黄素酶氧化乳酸、丙酮酸、α-甘油磷酸盐或NADH产生过氧化氢,由于缺乏过氧化氢酶活性,过氧化氢浓度急剧增加,氧化病原菌膜脂质和蛋白导致病原细胞成分破坏,尤其是细胞膜[30]

LAB抗菌活性表现的另一种机制由LAB产生的细菌素介导。Yang等[13]分离得到28株产细菌素的LAB菌株,在中和环境pH和消除过氧化氢影响后均对李斯特菌(Listeria monocytogenes)和沙克乳酸杆菌(Lactobacillus sakei)生长有一定抑制作用,且在洋葱上同样具有抑菌作用。细菌素影响细胞膜的完整性,抑制DNA和蛋白质合成。革兰氏阴性和耐药性革兰氏阳性细菌受到物理或化学应激伤害对细菌素敏感,导致细胞质膜功能不稳定[31]。细菌素分子最初在膜表面被吸收形成瞬时孔,引起质子动力损失,细胞质子梯度消失,改变细胞膜的渗透性,营养小分子泄漏,影响营养物质的运输和ATP的合成,细胞最终失去活力[32]。此外,一些细菌素可以引起敏感细胞裂解。在乳酸链球菌素存在的情况下,几个分子与细胞壁脂质结合帮助更多的乳酸链球菌素与细胞膜结合,在膜上形成孔隙;乳酸链球菌素作用需要病原菌膜内外存在电压差,因此与静息细胞相比对生长细胞更有效[33]

1.2 LAB对真菌毒素的脱毒作用

1.2.1 LAB对AFT的作用

根据目前已有的研究报道可以确定AFT可以与LAB细胞壁结合,且具有独立于细胞活性的可逆非共价弱相互作用[34]。LAB细胞壁的成分,如肽聚糖、碳水化合物和蛋白质等利用自身官能团与AFT发生物理吸附、离子交换以及络合作用[35]。根据Chlebicz等[36]报道乳酸杆菌的细胞壁肽聚糖、多糖和磷壁酸主要通过疏水相互作用结合AFB1。LAB-AFT复合物的稳定性是衡量LAB作为解毒剂的有效性的一个重要指标。Martínez等[37]研究发现鼠李糖乳杆菌(Lactobacillus rhamnosus) RC007能够吸附牛奶中61%的AFM1,形成的复合物具有一定的稳定性,而且在共培养过程中,乳杆菌能够生成胞外酶降解AFM1为毒性更小的化合物;他们同时揭示了AFT的降解是基于降解剂的AFT羟基化、环氧化、还原、脱氢的过程。但目前关于LAB清除AFT的研究主要集中在LAB的吸附作用,无论细胞活性如何,LAB都具有吸附AFT的能力,其中灭活LAB细胞对AFT的吸附率更高[38]。例如,Tian等[39]研究发现,与活菌相比,灭活植物乳杆菌(Lactiplantibacillus plantarum)对AFB1具有更强的结合能力,这项研究表明热处理可能导致膜蛋白、肽聚糖变性以及细胞壁多糖降解,使细胞壁通透性增加;而酸处理通过破坏糖苷键引起多糖变性,释放出可能转化为醛的单体,同时水解蛋白为小肽;这些事件均可导致LAB细胞壁的肽聚糖层被破坏,暴露主要由磷脂双层组成的受损质膜并释放细胞内成分,增加AFT结合位点。

LAB和AFT之间的结合本质上是可逆的,复合物的稳定性主要取决于菌株、处理方式和环境条件。Ismail等[40]的研究表明,当牛奶中AFM1的浓度为0.1 μg/L时,L. plantarum NRRLB-4496、瑞士乳杆菌(Lactobacillus helveticus) ATCC 12046和乳酸乳球菌(Lactococcus lactis) JF3102对AFM1的吸附率分别为85%、77%和73%;当用磷酸缓冲液洗涤3次后,约20%−30%的毒素被释放。Danial等[41]认为不同LAB对AFT的吸附差异可能是由于不同菌株的细胞壁及细胞膜结构存在差异。Møller等[42]研究发现活菌与灭活菌结合AFT效果差异显著,同时受到pH、孵育时间、菌株以及所用基质(牛奶或磷酸钾缓冲液)的影响。

AFT的微生物降解是指AFT的呋喃环或香豆素结构的修饰。Śliżewska等[43]已经报道了关于副干酪乳杆菌(Lactobacillus paracasei) LOCK0920、短乳杆菌(Lactobacillus brevis) LOCK0944、L. plantarum LOCK0945发酵24 h后对AFB1的降解率可达60%以上。此外,Zhang等[44]发现L. helveticus FAM22155在固态发酵过程中产生某些活性蛋白共同或单独降解AFB1生成其他物质。根据Liu等[45]的说法,从发光小蜜环菌(Armillariella tabescens)中分离纯化得到的AFT解毒酶首先将AFB1转化为AFB1的环氧衍生物,然后在过氧化氢存在下发生脱环氧化形成二氢二醇AFB1。Afsharmanesh等[46]发现枯草芽胞杆菌(Bacillus subtilis)的氧化还原酶同样可以打破AFB1的内酯环,从而形成双氧环。Eshelli等[47]报道了AFB1降解的另一种机制,据他们的研究结果表明红平红球菌(Rhodococcus erythropolis)产生酶催化修饰AFB1香豆素部分中内酯环双键的还原,随后内酯环脱羧产生AFD1。AFB1的生物转化如图 1所示。

图 1 AFB1的生物转化 Figure 1 Biotransformation of AFB1.

1.2.2 LAB对ZEN的作用

根据Król等[48]的说法,乳酸杆菌对ZEN的吸附是一个非线性过程,涉及快速生物吸附和生物转化2个过程。ZEN可与LAB细胞表面蛋白、肽聚糖相互作用从而被细胞壁吸附,或与细胞内蛋白相互作用被吸收到细菌细胞内[7]。LAB结构的独特性使得ZEN的吸附具有特异性。Zhao等[49]评估了27株L. plantarum对ZEN的吸附能力,结果表明27株菌对ZEN的吸附能力各不相同,在1.72%‒47.80%之间,且ZEN的去除效率受到细菌密度、毒素初始浓度、细菌活力和孵育温度等因素影响。有研究表明LAB吸附ZEN主要依靠细胞壁蛋白及脂质,通过疏水相互作用结合ZEN,而LAB细胞壁多糖并不影响ZEN的结合,氢键不参与LAB对ZEN的相互作用[50]

ZEN具有特征性大环内酯结构,可通过物理化学或生物因素水解,据Vekiru等[51]报道,破坏ZEN内酯环后的水解产物未表现出雌激素活性,因此内酯键的破坏被认为是降低ZEN毒性的有效作用机制。Wang等[52]认为高酯酶活性的微生物具有减少ZEN污染的潜力,因此筛选具有酯酶活性的菌株检测对ZEN的降解能力,最终得到一株具有高酯酶活性且对ZEN降解能力强的短小芽孢杆菌(Bacillus pumilus) ES-21;ZEN在酯酶作用下内酯环裂解,随后发生脱羧反应,得到无雌激素活性的降解产物。Chen等[53]的研究表明了相似的结果,从消化道筛选的3株高酯酶活性LAB通过吸附降低ZEN浓度,随后酯酶介导ZEN降解。ZEN的生物转化如图 2所示。

图 2 ZEN的生物转化 Figure 2 Biotransformation of ZEN.

1.2.3 LAB对PAT的作用

LAB减少PAT主要通过细胞壁吸附和胞内/外酶降解[54]。LAB细胞壁主要由肽聚糖层组成,覆盖磷壁酸、S层蛋白和多糖,普遍认为蛋白和磷壁酸参与PAT的吸附[55]。Bahati[56]等在研究LAB对PAT的吸附作用时同样发现,与肽聚糖层相比,碱性氨基酸、硫醇和酯类化合物是PAT吸附的决定因素,主要涉及C=O、N−H、C−H和N−O与PAT的相互作用。Ngea等[57]研究发现LAB细胞吸附PAT的能力受到环境因素的影响,包括细菌浓度、PAT初始浓度、pH和孵育时间。此外,Zoghi等[58]报道L. plantarum和嗜酸乳杆菌(Lactobacillus acidophilus)从苹果汁中去除PAT的能力与一些益生元的存在有关,如冷藏6周的苹果汁中添加低聚果糖和抗坏血酸后,LAB对PAT的清除率最高能达到91.23%。

微生物或生物酶通过破坏PAT的内酯环或半缩醛环,分别产生低毒性的desoxypatulinic acid (DPA)和E/Z-ascladiol,实现对PAT的降解[59]。根据本实验室已有研究结果,从云南传统市场购买的乳饼中分离得到5株具有高效降解PAT能力的菌株,其中4株为L. plantarum,1株为乳酸片球菌(Pediococcus acidilactici);5株菌细胞壁对PAT具有一定的吸附能力,但主要通过分泌胞外蛋白降解PAT[60]。由酵母介导的PAT降解途径涉及PAT-内酯环的水解,随后C−5/C−7双键被还原最后脱水产生DPA[61]。Zheng等[5]报道干酪乳杆菌(Lactobacillus casei) YZU01经PAT诱导可产生高效降解PAT的胞外酶,且在该细菌清除PAT中发挥关键作用。由酶介导的PAT降解为E/Z-ascladiol,主要通过断裂吡喃环C4处的C−O键开环转化为E/Z-ascladiol,其中Z-ascladiol为E-ascladiol的非酶促异构化产物[59]。PAT的生物转化如图 3所示。

图 3 PAT的生物转化 Figure 3 Biotransformation of PAT.

1.2.4 LAB对OTA的作用

LAB细胞壁可通过细胞表面疏水性、电子供体/受体和路易斯酸碱相互作用与OTA结合,且这种结合能力可以通过诱变/遗传操作或添加促进结合化合物进一步增强。Zheng等[62]的研究同样表明LAB主要通过吸附实现对OTA的解毒,胞内和胞外酶均未显示出对OTA的降解作用,并且在吸附过程中受环境温度和pH影响较大。这可能是因为不同温度和pH下LAB生长状态和OTA清除位点活性具有差异。在最近的一项研究中也出现了类似的结果,Luz等[11]研究发现约氏乳杆菌(Lactobacillus johnsonii)、保加利亚乳杆菌(Lactobacillus bulgaricus)、唾液乳杆菌(Lactobacillus salivarius)在pH值为3.5的MRS培养基中使OTA含量降低17%左右;当pH值为6.5时清除效果受到显著影响,降低至1.6%−4.4%,因此作者推断LAB对OTA的吸附作用直接受到pH、细菌密度和细菌种类的影响。

在最近的一项分析西藏开菲尔谷物中LAB对OTA解毒机制的研究中,发现OTA的酰胺键可以被LAB细胞内部或附着在细胞上的细胞活性物水解释放出无毒降解产物OTα和苯丙氨酸[63]。以前的研究已经证明OTA水解由一些肽酶以不同程度的效率介导,如来自牛胰腺的羧肽酶A[64]、来自酵母菌的羧肽酶Y[65]、商业脂肪酶和酰胺酶[66]。进一步分析OTA去除的机制,发现吸附和降解均能去除OTA,其中吸附起主要作用[63]。Taroub等[67]研究发现在葡萄中,LAB对OTA的解毒是因为菌体本身而非产生的代谢物,同时发现LAB在MRS培养基中对OTA的解毒能力远高于在PBS中,LAB菌株可能在不同培养基中的代谢机制不同。OTA的生物转化如图 4所示。

图 4 OTA的生物转化 Figure 4 Biotransformation of OTA.

1.2.5 LAB对FB的作用

在各种FB中,FB1和FB2是对动物健康造成不利影响的主要饲料污染物。LAB对FB1和FB2的结合取决于细胞壁完整的肽聚糖结构而非表面脂质、多糖及蛋白,且受到环境温度、pH、孵育时间的显著影响[68]。N-乙酰氨基葡萄糖和N-乙酰胞壁酸通过β-1, 4糖苷键交替构成肽聚糖主链,并与短肽交联。肽桥的特定氨基酸序列导致肽聚糖的分子结构随细菌种类变化而变化,这就可以解释不同菌株在结合FB方面的不同效率。Niderkorn等[69]认为与乳酸杆菌属相比,链球菌属的结合效率更高可能是因为肽桥的氨基酸序列不同,乳酸杆菌属肽桥为2−3个丙氨酸,而在链球菌属的肽桥为天冬氨酸。

Dawlal等[70]利用荧光染料将LAB细胞表面与FB1、FB2的相互作用可视化,发现LAB与FB之间的相互作用是结合而非生物代谢,且失活细胞表现出更强的结合能力;细胞壁的物理化学结构性质由其结构、表面成分的化学性质和表面大分子的构象决定,热处理导致LAB细胞壁中的成分变性或解体,使得细胞壁更多组分成为FB1和FB2的有利结合位点;一般而言细胞壁表面积越大,结合能力越强,而相较于研究中的德氏乳杆菌(Lactobacillus delbrueckii)和L. plantarum而言,静电势对LAB活细胞结合毒素的能力影响更大,使得具有更大细胞表面积的L. delbrueckii对FB1和FB2的结合亲和力低于L. plantarum;除了LAB自身结构外,FB表面静电势和化学结构差异导致不同分子在LAB细胞壁上有不同的优先结合位点,而FB1相较于FB2结构上额外多了一个羟基,额外羟基和羧基形成氢键导致空间构象变化,限制FB1与LAB细胞壁的结合;然而在这项研究中,因为FB1和FB2发出相同的荧光,菌株之间未观察到可视化差异;同时作者探讨认为LAB细胞与FB之间的相互作用主要由长程(空间和静电相互作用)和短程(范德华力、路易斯酸碱作用、氢键和生物特异性相互作用)力介导。

FB是多氢醇和丙三羧酸组成的双酯类化合物,在酶促反应过程中,羧酸酯酶可以释放出主要导致FB毒性的2个三羧酸部分,得到水解产物HFB[71]。Gu等[72]利用猪上皮细胞和猪外周血单核细胞调查研究了FB1和HFB1的毒性作用,结果表明HFB1毒性弱于FB1,酶促降解FB1为HFB1可能是减少猪肠道炎症的有效策略。FB1的生物转化如图 5所示。

图 5 FB1的生物转化 Figure 5 Biotransformation of FB1.

LAB细胞壁与真菌毒素的相互作用如图 6所示,其中ZEN主要与细胞膜的S层蛋白和肽聚糖层结合,PAT主要与磷壁酸结合,AFB1主要与肽聚糖、多糖和磷壁酸结合,FB1主要与肽聚糖层结合。

图 6 LAB细胞壁对真菌毒素的吸附作用 Figure 6 Adsorption of mycotoxins by LAB cell wall.
2 LAB在食品和饲料中的实际应用

消费者越来越重视食品中安全的天然成分代替人工添加剂和防腐剂,为此各种来源的天然抗真菌化合物广泛用于食品防腐,例如植物含有的植物精油、黄酮类和酚类化合物、卵磷脂、多肽和生物碱,以及动物含有的几丁质、壳聚糖和乳铁蛋白[7]。LAB的安全性及其抗菌潜力使其成为食品和饲料中生物防腐剂的理想选择。部分LAB在发酵过程中降解真菌毒素或从食品饲料表面吸附真菌毒素,同时可以为消费者提供额外的健康益处。目前主要通过物理和化学结合的方法来减少食品和饲料中真菌毒素含量,涉及具有真菌毒素结合能力的物理化学试剂的使用。然而这些方法在食品加工或储存下的实际应用非常有限,使用LAB去除真菌毒素可代替传统方法。

AFM1严重污染乳制品,截至目前,LAB结合AFM1已被证明是从牛奶及其制品中去除AFM1的最佳策略。例如,融合魏斯氏菌(Weissella confusa) H1和L. plantarum S2在发酵过程中将牛奶中AFM1含量分别降低了78%和72%[73]。Panwar等[74]证明了乳酸杆菌在人工污染的脱脂牛奶中结合AFM1的能力。嗜酸乳杆菌(L. acidophilus)和L. plantarum在存储温度为21‒37 ℃时能从发酵乳中去除大部分的AFM1。Elsanhoty等[75]证明接种含有L. bulgaricus和嗜热链球菌(Streptococcus thermophilus)的酸奶发酵剂后能有效去除牛奶中的AFM1,且被认为是在酸奶发酵中去除AFM1的有效方法。

LAB在青贮饲料中作为微生物接种剂被广泛应用,它们可以增强青贮饲料的好氧稳定性。Ma等[76]首次在玉米青贮饲料中使用LAB探究细菌降低AFB1的功效,LAB在2 h内将青贮饲料中AFB1的初始浓度从30 μg/kg降低到2 μg/kg,并且在青贮过程中,AFB1浓度持续下降,在72 h后达到安全水平。Zielińska[77]等发现多种LAB之间协同作用可以在48 d内将聚乙烯微筒仓中青贮饲料所含的AFB1和OTA含量降低80%。

除了乳制品和青贮饲料外,LAB去除真菌毒素的潜力已在其他食品和饲料商品中得到开发。例如,L. plantarum去除AFB1的潜力已用于面包制作,其中L. bulgaricusL. plantarum分别将面包的保质期延长了3 d和4 d,并将面包中的AFT含量分别减少了99.9%和99.4%[78]。应用LAB降解苹果汁中的PAT有效地将PAT含量降低93%,而对苹果汁质量无任何影响[56]。碳黑曲霉(Aspergillus carbonarius)产生的OTA对鲜葡萄造成严重污染,Lappa等[79]评估了不同LAB减少葡萄表面OTA的能力,其中L. plantarum 1645和L. plantarum 195分别使OTA含量降低44.5%和32.3%。

3 结论和展望

真菌毒素污染食品及饲料是一个普遍的食品安全问题,在食品的产前、生产、运输和储藏的各个过程中都可能被污染,导致严重的经济损失,并危害人类和动物健康。目前,真菌毒素解毒的方法主要包括物理、化学和生物法。然而部分真菌毒素结构稳定,传统的物理解毒法效率低下,而化学法虽然能达到良好的解毒效果,但容易产生有毒副产物,同时可能破坏食品的营养成分。生物法在温和条件下可以减少或完全去除真菌毒素,对食品和饲料的感官性状和口感影响较小,因此生物脱毒法已成为目前最具发展潜力的脱毒方法。使用解毒酶或微生物控制食品和饲料中的真菌毒素可以有效防止毒素进入食物链,从而阻止其危害人类和动物的健康。

LAB作为一种常见微生物,可产生有机酸和生物活性物质抑制产毒真菌生长,从而抑制真菌毒素的产生,具有作为生物防腐剂的应用潜力。LAB作为食品级的微生物在各个领域都有着优良的表现,目前对LAB清除真菌毒素的研究主要集中在生物吸附。LAB吸附毒素是一个可逆的过程,吸附率与菌体浓度和毒素初始浓度息息相关;LAB-毒素复合物并不是绝对稳定的,这与环境因素以及处理方式有关;不同的LAB对不同毒素的清除率具有差异,与菌株自身特性有关,并且在此过程中,受到细菌活性、培养时间、pH、培养温度等因素的影响。LAB对真菌毒素的生物降解作用主要通产生代谢物破坏毒素毒性基团达到对真菌毒素减毒的目的,但目前相关研究较少。LAB对真菌毒素的脱毒可应用于食品工业,这一点已在实验室水平研究中得到证实,但缺乏工业层面的研究。

近年来,研究者在检测具有抗真菌活性的LAB及其活性代谢物方面取得了突破性进展,但在食品和饲料中的实际应用有限。因为受到环境因素及菌株自身因素的影响,实验室水平的LAB菌株或酶对真菌毒素的解毒并不能完全反映食品加工工业应用的情况,商业规模生产条件下的脱毒过程更为复杂。鉴于上述情况,具有优良真菌毒素脱毒性能和良好稳定性的LAB在实际应用中具有相当大的需求。此外,应充分评估LAB在模拟条件下的存活能力和适应性,以评价在动物肠道中的真菌毒素解毒情况。从经济角度来看,应对LAB孵育的时间和发酵材料成本进行优化,找到更加省时省力且成本更低的应用方法。从安全角度来看,由于LAB自身特性并不能完全保证在对真菌毒素生物脱毒过程中无其他毒性产物生成,因此需要进一步分析研究不同菌株处理真菌毒素后的残留产物。从食品风味应用的角度来看,利用LAB对食品中真菌毒素脱毒时应考虑对食品风味和品质的影响,避免降低食品的适口性。此外,应着重研究LAB对真菌毒素解毒相关物质的代谢途径,利用分子生物学技术增加相关代谢物的生物表达量,为工业化生产真菌毒素解毒相关物质奠定基础。

总而言之,LAB在食品工业方面具有巨大的应用潜力,但需根据不同LAB菌株的自身特性进一步研究阐明LAB生物脱毒的机制,寻找真菌毒素脱毒的主导物质,消除LAB应用在食品行业存在的隐患,为LAB生物脱毒的工业化应用奠定基础。

REFERENCES
[1]
YAO YZ, LONG M. The biological detoxification of deoxynivalenol: a review[J]. Food and Chemical Toxicology, 2020, 145: 111649. DOI:10.1016/j.fct.2020.111649
[2]
CHEN RP, SUN YF, HUO BY, QIN YK, LI S, LIANG J, ZHOU HY, GAO ZX. Progress in multiple detection technologies for mycotoxins[J]. Food Science, 2021, 42(17): 267-274. (in Chinese)
陈瑞鹏, 孙云凤, 霍冰洋, 秦英凯, 李双, 梁俊, 周焕英, 高志贤. 真菌毒素多重检测技术研究进展[J]. 食品科学, 2021, 42(17): 267-274. DOI:10.7506/spkx1002-6630-20200705-060
[3]
LI YY, JIA YS, GE GT, WANG ZJ, DU S, SUN L, JIANG XW, WU HX, HOU ML, CHEN XM. Progress in research on detection, risk assessment and control of mycotoxins in forage products[J]. Acta Prataculturae Sinica, 2021, 30(4): 191-204. (in Chinese)
李宇宇, 贾玉山, 格根图, 王志军, 都帅, 孙林, 降晓伟, 吴洪新, 侯美玲, 陈喜梅. 饲用草产品主要真菌毒素污染检测、风险评估与控制研究进展[J]. 草业学报, 2021, 30(4): 191-204.
[4]
ZHOU SY, XU LG, KUANG H, XIAO J, XU CL. Immunoassays for rapid mycotoxin detection: state of the art[J]. The Analyst, 2020, 145(22): 7088-7102. DOI:10.1039/D0AN01408G
[5]
ZHENG XF, WEI WN, RAO SQ, GAO L, LI HX, YANG ZQ. Degradation of patulin in fruit juice by a lactic acid bacteria strain Lactobacillus casei YZU01[J]. Food Control, 2020, 112: 107147. DOI:10.1016/j.foodcont.2020.107147
[6]
NAHLE S, KHOURY AE, ASSAF JC, LOUKA N, CHOKR A, ATOUI A. A promising innovative technique for mycotoxin detoxification from beverages using biofilms of lactic acid bacteria[J]. Innovative Food Science & Emerging Technologies, 2022, 82: 103165.
[7]
SADIQ FA, YAN BW, TIAN FW, ZHAO JX, ZHANG H, CHEN W. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: a comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5): 1403-1436. DOI:10.1111/1541-4337.12481
[8]
ZHAO SS, HAO XM, YANG FY, WANG Y, FAN XM, WANG YP. Antifungal activity of Lactobacillus plantarum ZZUA493 and its application to extend the shelf life of Chinese steamed buns[J]. Foods (Basel, Switzerland), 2022, 11(2): 195.
[9]
VIMONT A, BENOIT F, GOMAA A, FORTIN HP, FLISS I. Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its potential application in yogurt[J]. International Journal of Food Microbiology, 2019, 289: 182-188. DOI:10.1016/j.ijfoodmicro.2018.09.005
[10]
LIU AP, ZHENG YL, LIU L, CHEN SJ, HE L, AO XL, YANG Y, LIU SL. Decontamination of aflatoxins by lactic acid bacteria[J]. Current Microbiology, 2020, 77(12): 3821-3830. DOI:10.1007/s00284-020-02220-y
[11]
LUZ C, FERRER J, MAÑES J, MECA G. Toxicity reduction of ochratoxin A by lactic acid bacteria[J]. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2018, 112: 60-66. DOI:10.1016/j.fct.2017.12.030
[12]
WANG J, SU YJ, GU LP, CHANG CH, XU LL, YANG YJ, LI JH. The inhibition of cell-free supernatants of several lactic acid bacteria on the selected psychrophilic spoilage bacteria in liquid whole egg[J]. Food Control, 2021, 123: 107753. DOI:10.1016/j.foodcont.2020.107753
[13]
YANG E, FAN LH, JIANG YM, DOUCETTE C, FILLMORE S. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts[J]. AMB Express, 2012, 2(1): 48. DOI:10.1186/2191-0855-2-48
[14]
LIANG NY, ZHAO Z, CURTIS JM, GӒNZLE MG. Antifungal cultures and metabolites of lactic acid bacteria for use in dairy fermentations[J]. International Journal of Food Microbiology, 2022, 383: 109938. DOI:10.1016/j.ijfoodmicro.2022.109938
[15]
RUGGIRELLO M, NUCERA D, CANNONI M, PERAINO A, ROSSO F, FONTANA M, COCOLIN L, DOLCI P. Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations[J]. Food Research International (Ottawa, Ont), 2019, 115: 519-525. DOI:10.1016/j.foodres.2018.10.002
[16]
LUZ C, D՚OPAZO V, MAÑES J, MECA G. Antifungal activity and shelf life extension of loaf bread produced with sourdough fermented by Lactobacillus strains[J]. Journal of Food Processing and Preservation, 2019, 43(10): e14126.
[17]
EL OIRDI S, LAKHLIFI T, BAHAR AA, YATIM M, RACHID Z, BELHAJ A. Isolation and identification of Lactobacillus plantarum 4F, a strain with high antifungal activity, fungicidal effect, and biopreservation properties of food[J]. Journal of Food Processing and Preservation, 2021, 45(6): e15517.
[18]
AWAH JI, UKWURU MU, ALUM EA, KINGSLEY TL. Bio-preservative potential of lactic acid bacteria metabolites against fungal pathogens[J]. African Journal of Microbiology Research, 2018, 12(39): 913-922. DOI:10.5897/AJMR2018.8954
[19]
OUIDDIR M, BETTACHE G, LEYVA SALAS M, PAWTOWSKI A, DONOT C, BRAHIMI S, MABROUK K, COTON E, MOUNIER J. Selection of Algerian lactic acid bacteria for use as antifungal bioprotective cultures and application in dairy and bakery products[J]. Food Microbiology, 2019, 82: 160-170. DOI:10.1016/j.fm.2019.01.020
[20]
MATEO EM, TARAZONA A, JIMÉNEZ M, MATEO F. Lactic acid bacteria as potential agents for biocontrol of aflatoxigenic and ochratoxigenic fungi[J]. Toxins, 2022, 14(11): 807. DOI:10.3390/toxins14110807
[21]
MUHIALDIN BJ, HASSAN Z, SAARI N. In vitro antifungal activity of lactic acid bacteria low molecular peptides against spoilage fungi of bakery products[J]. Annals of Microbiology, 2018, 68(9): 557-567. DOI:10.1007/s13213-018-1363-x
[22]
FOUAD MT, EL-DESOUKY TA. Anti-toxigenic effect of lactic acid bacteria against Aspergillus spp. isolated from wheat grains[J]. The Open Microbiology Journal, 2020, 14(1): 252-259. DOI:10.2174/1874434602014010252
[23]
ABDULLAH AN, ALI EG, MARIADHAS VA. Co-fermentation of food waste and municipal sludge from the Saudi Arabian environment to improve lactic acid production by Lactobacillus rhamnosus AW3 isolated from date processing waste[J]. Sustainability, 2020, 12(17): 6899. DOI:10.3390/su12176899
[24]
SHEHATA MG, BADR AN, SOHAIMY SAEI, ASKER D, AWAD TS. Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives[J]. Annals of Agricultural Sciences, 2019, 64(1): 71-78. DOI:10.1016/j.aoas.2019.05.002
[25]
SEDAGHAT H, ESKANDARI MH, MOOSAVI- NASAB M, SHEKARFOROUSH SS. Application of non-starter lactic acid bacteria as biopreservative agents to control fungal spoilage of fresh cheese[J]. International Dairy Journal, 2016, 56: 87-91. DOI:10.1016/j.idairyj.2016.01.006
[26]
RAHAYU ES, TRIYADI R, KHUSNA RNB, DJAAFAR TF, UTAMI T, MARWATI T, HATMI RU. Indigenous yeast, lactic acid bacteria, and acetic acid bacteria from cocoa bean fermentation in Indonesia can inhibit fungal-growth-producing mycotoxins[J]. Fermentation, 2021, 7(3): 192. DOI:10.3390/fermentation7030192
[27]
CUI L, GUO WG. Antibacterial substances produced by lactic acid bacteria and their mechanism[J]. Journal of Food Safety & Quality, 2018, 9(11): 2578-2584. (in Chinese)
崔磊, 郭伟国. 乳酸菌产生的抑菌物质及其作用机制[J]. 食品安全质量检测学报, 2018, 9(11): 2578-2584. DOI:10.3969/j.issn.2095-0381.2018.11.002
[28]
ALAKOMI HL, SKYTTÄ E, SAARELA M, MATTILA-SANDHOLM T, LATVA-KALA K, HELANDER IM. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane[J]. Applied and Environmental Microbiology, 2000, 66(5): 2001-2005. DOI:10.1128/AEM.66.5.2001-2005.2000
[29]
YÉPEZ A, LUZ C, MECA G, VIGNOLO G, MAÑES J, AZNAR R. Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin[J]. Food Control, 2017, 78: 393-400. DOI:10.1016/j.foodcont.2017.03.009
[30]
SINGH VP. Recent approaches in food bio-preservation-a review[J]. Open Veterinary Journal, 2018, 8(1): 104-111. DOI:10.4314/ovj.v8i1.16
[31]
COBAN HB. Organic acids as antimicrobial food agents: applications and microbial productions[J]. Bioprocess and Biosystems Engineering, 2020, 43(4): 569-591. DOI:10.1007/s00449-019-02256-w
[32]
EL ISSAOUI K, SENHAJI NS, ZINEBI S, ZAHLI R, HAOUJAR I, AMAJOUD N, ABRINI J, KHAY EO. Potential application of bacteriocin produced from lactic acid bacteria[J]. Microbiology and Biotechnology Letters, 2020, 48(3): 237-251. DOI:10.4014/mbl.2001.01004
[33]
FIDAN H, ESATBEYOGLU T, ŠIMAT V, TRIF M, TABANELLI G, KOSTKA T, MONTANARI C, IBRAHIM S, OZOGUL F. Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: facts and gaps[J]. Food Bioscience, 2022, 47(9): 101741.
[34]
GONCALVES BL, MUAZK K, COPPA CFSC, ROSIM RE, KAMIMURA ES, OLIVEIRA CAF, CORASSIN CH. Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese[J]. Food Research International, 2020, 136: 109604. DOI:10.1016/j.foodres.2020.109604
[35]
ASURMENDI P, GERBALDO G, PASCUAL L, BARBERIS L. Lactic acid bacteria with promising AFB1 binding properties as an alternative strategy to mitigate contamination on brewers' grains[J]. Journal of Environmental Science and Health, Part B, 2020, 55(11): 1002-1008. DOI:10.1080/03601234.2020.1807834
[36]
CHLEBICZ A, ŚLIŻEWSKA K. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast[J]. Probiotics and Antimicrobial Proteins, 2020, 12(1): 289-301. DOI:10.1007/s12602-018-9512-x
[37]
MARTÍNEZ MP, MAGNOLI AP, GONZÁLEZ PEREYRA ML, CAVAGLIERI L. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites[J]. Toxicon: Official Journal of the International Society on Toxinology, 2019, 172: 1-7. DOI:10.1016/j.toxicon.2019.10.001
[38]
GONÇALVES B, HENCK J, ULIANA R, KAMIMURA E, OLIVEIRA C, CORASSIN C. The use of microbiological methods to reduce aflatoxin M1 in cheese[J]. Access Microbiology, 2019, 1(1A).
[39]
TIAN M, ZHANG GF, DING SQ, JIANG Y, JIANG B, REN DY, CHEN P. Lactobacillus plantarum T3 as an adsorbent of aflatoxin B1 effectively mitigates the toxic effects on mice[J]. Food Bioscience, 2022, 49: 101984. DOI:10.1016/j.fbio.2022.101984
[40]
ISMAIL A, LEVIN RE, RIAZ M, AKHTAR S, GONG yun yun, de OLIVEIRA CAF. Effect of different microbial concentrations on binding of aflatoxin M1 and stability testing[J]. Food Control, 2017, 73: 492-496. DOI:10.1016/j.foodcont.2016.08.040
[41]
DANIAL EN, LAMFON MY, ALGHAMDI LA, ALAMRI AM, ALGHAMDI MS, ALGHAMDI SA. Removal of aflatoxin G1 using lactic acid bacteria[J]. Journal of Food Processing and Preservation, 2021, 45(1): e15090.
[42]
MØLLER COA, FREIRE L, ROSIM RE, MARGALHO LP, BALTHAZAR CF, FRANCO LT, SANT՚ANA AS, CORASSIN CH, RATTRAY FP, de OLIVEIRA CAF. Effect of lactic acid bacteria strains on the growth and aflatoxin production potential of Aspergillus parasiticus, and their ability to bind aflatoxin B1, ochratoxin A, and zearalenone in vitro[J]. Frontiers in Microbiology, 2021, 12: 655386. DOI:10.3389/fmicb.2021.655386
[43]
ŚLIŻEWSKA K, SMULIKOWSKA S. Detoxification of aflatoxin B1 and change in microflora pattern by probiotic in vitro fermentation of broiler feed[J]. Journal of Animal and Feed Sciences, 2011, 20(2): 300-309. DOI:10.22358/jafs/66187/2011
[44]
ZHANG Y, WANG P, KONG Q, COTTY PJ. Biotransformation of aflatoxin B1 by Lactobacillus helviticus FAM22155 in wheat bran by solid-state fermentation[J]. Food Chemistry, 2021, 341: 128180. DOI:10.1016/j.foodchem.2020.128180
[45]
LIU DL, YAO DS, LIANG YQ, ZHOU TH, SONG YP, ZHAO L, MA L. Production, purification, and characterization of an intracellular aflatoxin- detoxifizyme from Armillariella tabescens (E-20)[J]. Food and Chemical Toxicology, 2001, 39(5): 461-466. DOI:10.1016/S0278-6915(00)00161-7
[46]
AFSHARMANESH H, PEREZ-GARCIA A, ZERIOUH H, AHMADZADEH M, ROMERO D. Aflatoxin degradation by Bacillus subtilis UTB1 is based on production of an oxidoreductase involved in bacilysin biosynthesis[J]. Food Control, 2018, 94: 48-55. DOI:10.1016/j.foodcont.2018.03.002
[47]
ESHELLI M, HARVEY L, EDRADA-EBEL R, MCNEIL B. Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0[J]. Toxins, 2015, 7(2): 439-456. DOI:10.3390/toxins7020439
[48]
KRÓL A, POMASTOWSKI P, RAFIŃSKA K, RAILEAN-PLUGARU V, WALCZAK J, BUSZEWSKI B. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp.[J]. Analytical and Bioanalytical Chemistry, 2018, 410(3): 943-952. DOI:10.1007/s00216-017-0555-8
[49]
ZHAO L, JIN HY, JING L, ZHANG RY, REN HB, ZHANG XB, YU GP. Detoxification of zearalenone by three strains of lactobacillus plantarum from fermented food in vitro[J]. Food Control, 2015, 54: 158-164. DOI:10.1016/j.foodcont.2015.02.003
[50]
ADUNPHATCHARAPHON S, PETCHKONGKAEW A, VISESSANGUAN W. In vitro mechanism assessment of zearalenone removal by plant-derived Lactobacillus plantarum BCC 47723[J]. Toxins, 2021, 13(4): 286. DOI:10.3390/toxins13040286
[51]
VEKIRU E, HAMETNER C, MITTERBAUER R, RECHTHALER J, ADAM G, SCHATZMAYR G, KRSKA R, SCHUHMACHER R. Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite[J]. Applied and Environmental Microbiology, 2010, 76(7): 2353-2359. DOI:10.1128/AEM.01438-09
[52]
WANG G, YU MZ, DONG F, SHI JR, XU JH. Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21[J]. Food Control, 2017, 77: 57-64. DOI:10.1016/j.foodcont.2017.01.021
[53]
CHEN SW, HSU JT, CHOU YN, WANG HT. The application of digestive tract lactic acid bacteria with high esterase activity for zearalenone detoxification[J]. Journal of the Science of Food and Agriculture, 2018, 98(10): 3870-3879. DOI:10.1002/jsfa.8904
[54]
DIAO EJ, HOU HX, HU WC, DONG HZ, LI XY. Removing and detoxifying methods of patulin: a review[J]. Trends in Food Science & Technology, 2018, 81: 139-145.
[55]
LUO Y, LIU XJ, YUAN L, LI JK. Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: current research and future prospects[J]. Trends in Food Science & Technology, 2020, 96: 127-134.
[56]
BAHATI P, ZENG XJ, UZIZERIMANA F, TSOGGEREL A, AWAIS M, QI G, CAI R, YUE TL, YUAN YH. Adsorption mechanism of patulin from apple juice by inactivated lactic acid bacteria isolated from kefir grains[J]. Toxins, 2021, 13(7): 434. DOI:10.3390/toxins13070434
[57]
NGEA GLN, YANG QY, TCHABO JS, CASTORIA R, ZHANG XY, ZHANG HY. Leuconostoc mesenteroides subsp. mesenteroides LB7 isolated from apple surface inhibits P. expansum in vitro and reduces patulin in fruit juices[J]. International Journal of Food Microbiology, 2021, 339: 109025. DOI:10.1016/j.ijfoodmicro.2020.109025
[58]
ZOGHI A, KHOSRAVI-DARANI K, SOHRABVANDI S, ATTAR H, ALAVI SA. Effect of probiotics on patulin removal from synbiotic apple juice[J]. Journal of the Science of Food and Agriculture, 2017, 97(8): 2601-2609. DOI:10.1002/jsfa.8082
[59]
DAI LH, LI H, HUANG JW, HU YM, HE M, YANG Y, MIN J, GUO RT, CHEN CC. Structure-based rational design of a short-chain dehydrogenase/reductase for improving activity toward mycotoxin patulin[J]. International Journal of Biological Macromolecules, 2022, 222: 421-428. DOI:10.1016/j.ijbiomac.2022.09.121
[60]
ZHANG L. Screening, identification and degradation mechanism of lactic acid bacteria capable of degrading mycotoxins[D]. Kunming: Master's Thesis of Kunming University of Science and Technology, 2020 (in Chinese).
张乐. 具有降解真菌毒素乳酸菌的筛选、鉴定及其降解机理研究[D]. 昆明: 昆明理工大学硕士学位论文, 2020.
[61]
PINEDO C, WRIGHT SAI, COLLADO IG, GOSS RJM, CASTORIA R, HRELIA P, MAFFEI F, DURÁN-PATRÓN R. Isotopic labeling studies reveal the patulin detoxification pathway by the biocontrol yeast Rhodotorula kratochvilovae LS11[J]. Journal of Natural Products, 2018, 81(12): 2692-2699. DOI:10.1021/acs.jnatprod.8b00539
[62]
ZHENG XF, XIA FP, LI J, ZHENG LL, RAO SQ, GAO L, YANG ZQ. Reduction of ochratoxin A from contaminated food by Lactobacillus rhamnosus Bm01[J]. Food Control, 2023, 143: 109315. DOI:10.1016/j.foodcont.2022.109315
[63]
DU GG, LIU L, GUO Q, CUI YY, CHEN H, YUAN YH, WANG ZL, GAO ZP, SHENG QL, YUE TL. Microbial community diversity associated with Tibetan kefir grains and its detoxification of ochratoxin A during fermentation[J]. Food Microbiology, 2021, 99: 103803. DOI:10.1016/j.fm.2021.103803
[64]
PITOUT MJ. The hydrolysis of ochratoxin a by some proteolytic enzymes[J]. Biochemical Pharmacology, 1969, 18(2): 485-491. DOI:10.1016/0006-2952(69)90224-X
[65]
ABRUNHOSA L, INÊS A, RODRIGUES AI, GUIMARÃES A, PEREIRA VL, PARPOT P, MENDES-FAIA A, VENÂNCIO A. Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines[J]. International Journal of Food Microbiology, 2014, 188: 45-52. DOI:10.1016/j.ijfoodmicro.2014.07.019
[66]
DOBRITZSCH D, WANG HM, SCHNEIDER G, YU SK. Structural and functional characterization of ochratoxinase, a novel mycotoxin-degrading enzyme[J]. The Biochemical Journal, 2014, 462(3): 441-452. DOI:10.1042/BJ20140382
[67]
TAROUB B, SALMA L, MANEL Z, OUZARI HI, HAMDI Z, MOKTAR H. Isolation of lactic acid bacteria from grape fruit: antifungal activities, probiotic properties, and in vitro detoxification of ochratoxin A[J]. Annals of Microbiology, 2019, 69(1): 17-27. DOI:10.1007/s13213-018-1359-6
[68]
ZHAO HF, WANG X, ZHANG JW, ZHANG J, ZHANG BL. The mechanism of Lactobacillus strains for their ability to remove fumonisins B1 and B2[J]. Food and Chemical Toxicology, 2016, 97: 40-46. DOI:10.1016/j.fct.2016.08.028
[69]
NIDERKORN V, MORGAVI DP, ABOAB B, LEMAIRE M, BOUDRA H. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria[J]. Journal of Applied Microbiology, 2009, 106(3): 977-985. DOI:10.1111/j.1365-2672.2008.04065.x
[70]
DAWLAL P, BRABET C, THANTSHA MS, BUYS EM. Visualisation and quantification of fumonisins bound by lactic acid bacteria isolates from traditional African maize-based fermented cereals, ogi and mahewu[J]. Food Additives & Contaminants: Part A, 2019, 36(2): 296-307.
[71]
ALBERTS J, SCHATZMAYR G, MOLL WD, DAVIDS I, RHEEDER J, BURGER HM, SHEPHARD G, GELDERBLOM W. Detoxification of the fumonisin mycotoxins in maize: an enzymatic approach[J]. Toxins, 2019, 11(9): 523. DOI:10.3390/toxins11090523
[72]
GU MJ, HAN SE, HWANG K, MAYER E, REISINGER N, SCHATZMAYR D, PARK BC, HAN SH, YUN CH. Hydrolyzed fumonisin B1 induces less inflammatory responses than fumonisin B1 in the co-culture model of porcine intestinal epithelial and immune cells[J]. Toxicology Letters, 2019, 305: 110-116. DOI:10.1016/j.toxlet.2019.01.013
[73]
CHAUDHARY HJ, PATEL AR. Removal of aflatoxin M1 from milk and aqueous medium by indigenously isolated strains of W. confusa H1 and L. plantarum S2[J]. Food Bioscience, 2022, 45: 101468. DOI:10.1016/j.fbio.2021.101468
[74]
PANWAR R, KUMAR N, KASHYAP V, RAM C, KAPILA R. Aflatoxin M1 detoxification ability of probiotic lactobacilli of Indian origin in in vitro digestion model[J]. Probiotics and Antimicrobial Proteins, 2019, 11(2): 460-469. DOI:10.1007/s12602-018-9414-y
[75]
ELSANHOTY RM, SALAM SA, RAMADAN MF, BADR FH. Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria[J]. Food Control, 2014, 43: 129-134. DOI:10.1016/j.foodcont.2014.03.002
[76]
MA ZX, AMARO FX, ROMERO JJ, PEREIRA OG, JEONG KC, ADESOGAN AT. The capacity of silage inoculant bacteria to bind aflatoxin B1 in vitro and in artificially contaminated corn silage[J]. Journal of Dairy Science, 2017, 100(9): 7198-7210. DOI:10.3168/jds.2016-12370
[77]
ZIELIŃSKA KJ, FABISZEWSKA AU. Improvement of the quality of maize grain silage by a synergistic action of selected lactobacilli strains[J]. World Journal of Microbiology and Biotechnology, 2018, 34(1): 9. DOI:10.1007/s11274-017-2400-9
[78]
SALADINO F, LUZ C, MANYES L, FERNÁNDEZ- FRANZÓN M, MECA G. In vitro antifungal activity of lactic acid bacteria against mycotoxigenic fungi and their application in loaf bread shelf life improvement[J]. Food Control, 2016, 67: 273-277. DOI:10.1016/j.foodcont.2016.03.012
[79]
LAPPA IK, MPARAMPOUTI S, LANZA B, PANGAGOU E. Control of Aspergillus carbonarius in grape berries by Lactobacillus plantarum: a phenotypic and gene transcription study[J]. International Journal of Food Microbiology, 2018, 275: 56-65. DOI:10.1016/j.ijfoodmicro.2018.04.001